Neural operators, which emerge as implicit solution operators of hidden governing equations, have recently become popular tools for learning responses of complex real-world physical systems. Nevertheless, the majority of neural operator applications has thus far been data-driven, which neglects the intrinsic preservation of fundamental physical laws in data. In this paper, we introduce a novel integral neural operator architecture, to learn physical models with fundamental conservation laws automatically guaranteed. In particular, by replacing the frame-dependent position information with its invariant counterpart in the kernel space, the proposed neural operator is by design translation- and rotation-invariant, and consequently abides by the conservation laws of linear and angular momentums. As applications, we demonstrate the expressivity and efficacy of our model in learning complex material behaviors from both synthetic and experimental datasets, and show that, by automatically satisfying these essential physical laws, our learned neural operator is not only generalizable in handling translated and rotated datasets, but also achieves state-of-the-art accuracy and efficiency as compared to baseline neural operator models.
translated by 谷歌翻译
Graph Neural Networks (GNNs) have been widely applied to different tasks such as bioinformatics, drug design, and social networks. However, recent studies have shown that GNNs are vulnerable to adversarial attacks which aim to mislead the node or subgraph classification prediction by adding subtle perturbations. Detecting these attacks is challenging due to the small magnitude of perturbation and the discrete nature of graph data. In this paper, we propose a general adversarial edge detection pipeline EDoG without requiring knowledge of the attack strategies based on graph generation. Specifically, we propose a novel graph generation approach combined with link prediction to detect suspicious adversarial edges. To effectively train the graph generative model, we sample several sub-graphs from the given graph data. We show that since the number of adversarial edges is usually low in practice, with low probability the sampled sub-graphs will contain adversarial edges based on the union bound. In addition, considering the strong attacks which perturb a large number of edges, we propose a set of novel features to perform outlier detection as the preprocessing for our detection. Extensive experimental results on three real-world graph datasets including a private transaction rule dataset from a major company and two types of synthetic graphs with controlled properties show that EDoG can achieve above 0.8 AUC against four state-of-the-art unseen attack strategies without requiring any knowledge about the attack type; and around 0.85 with knowledge of the attack type. EDoG significantly outperforms traditional malicious edge detection baselines. We also show that an adaptive attack with full knowledge of our detection pipeline is difficult to bypass it.
translated by 谷歌翻译
Current state-of-the-art summarization models are trained with either maximum likelihood estimation (MLE) or reinforcement learning (RL). In this study, we investigate the third training paradigm and argue that inverse reinforcement learning (IRL) may be more suitable for text summarization. IRL focuses on estimating the reward function of an agent, given a set of observations of that agent's behavior. Generally, IRL provides advantages in situations where the reward function is not explicitly known or where it is difficult to define or interact with the environment directly. These situations are exactly what we observe in summarization. Thus, we introduce inverse reinforcement learning into text summarization and define a suite of sub-rewards that are important for summarization optimization. By simultaneously estimating the reward function and optimizing the summarization agent with expert demonstrations, we show that the model trained with IRL produces summaries that closely follow human behavior, in terms of better ROUGE, coverage, novelty, compression ratio and factuality when compared to the baselines trained with MLE and RL.
translated by 谷歌翻译
Conversational text-to-SQL is designed to translate multi-turn natural language questions into their corresponding SQL queries. Most state-of-the-art conversational text- to-SQL methods are incompatible with generative pre-trained language models (PLMs), such as T5. In this paper, we present a two-stage unified MultI-task Generation frAmework (MIGA) that leverages PLMs' ability to tackle conversational text-to-SQL. In the pre-training stage, MIGA first decomposes the main task into several related sub-tasks and then unifies them into the same sequence-to-sequence (Seq2Seq) paradigm with task-specific natural language prompts to boost the main task from multi-task training. Later in the fine-tuning stage, we propose four SQL perturbations to alleviate the error propagation problem. MIGA tends to achieve state-of-the-art performance on two benchmarks (SparC and CoSQL). We also provide extensive analyses and discussions to shed light on some new perspectives for conversational text-to-SQL.
translated by 谷歌翻译
Neural Radiance Fields (NeRF) have demonstrated superior novel view synthesis performance but are slow at rendering. To speed up the volume rendering process, many acceleration methods have been proposed at the cost of large memory consumption. To push the frontier of the efficiency-memory trade-off, we explore a new perspective to accelerate NeRF rendering, leveraging a key fact that the viewpoint change is usually smooth and continuous in interactive viewpoint control. This allows us to leverage the information of preceding viewpoints to reduce the number of rendered pixels as well as the number of sampled points along the ray of the remaining pixels. In our pipeline, a low-resolution feature map is rendered first by volume rendering, then a lightweight 2D neural renderer is applied to generate the output image at target resolution leveraging the features of preceding and current frames. We show that the proposed method can achieve competitive rendering quality while reducing the rendering time with little memory overhead, enabling 30FPS at 1080P image resolution with a low memory footprint.
translated by 谷歌翻译
Large deep learning models have achieved remarkable success in many scenarios. However, training large models is usually challenging, e.g., due to the high computational cost, the unstable and painfully slow optimization procedure, and the vulnerability to overfitting. To alleviate these problems, this work studies a divide-and-conquer strategy, i.e., dividing a large model into smaller modules, training them independently, and reassembling the trained modules to obtain the target model. This approach is promising since it avoids directly training large models from scratch. Nevertheless, implementing this idea is non-trivial, as it is difficult to ensure the compatibility of the independently trained modules. In this paper, we present an elegant solution to address this issue, i.e., we introduce a global, shared meta model to implicitly link all the modules together. This enables us to train highly compatible modules that collaborate effectively when they are assembled together. We further propose a module incubation mechanism that enables the meta model to be designed as an extremely shallow network. As a result, the additional overhead introduced by the meta model is minimalized. Though conceptually simple, our method significantly outperforms end-to-end (E2E) training in terms of both final accuracy and training efficiency. For example, on top of ViT-Huge, it improves the accuracy by 2.7% compared to the E2E baseline on ImageNet-1K, while saving the training cost by 43% in the meantime. Code is available at https://github.com/LeapLabTHU/Model-Assembling.
translated by 谷歌翻译
The problem of covariate-shift generalization has attracted intensive research attention. Previous stable learning algorithms employ sample reweighting schemes to decorrelate the covariates when there is no explicit domain information about training data. However, with finite samples, it is difficult to achieve the desirable weights that ensure perfect independence to get rid of the unstable variables. Besides, decorrelating within stable variables may bring about high variance of learned models because of the over-reduced effective sample size. A tremendous sample size is required for these algorithms to work. In this paper, with theoretical justification, we propose SVI (Sparse Variable Independence) for the covariate-shift generalization problem. We introduce sparsity constraint to compensate for the imperfectness of sample reweighting under the finite-sample setting in previous methods. Furthermore, we organically combine independence-based sample reweighting and sparsity-based variable selection in an iterative way to avoid decorrelating within stable variables, increasing the effective sample size to alleviate variance inflation. Experiments on both synthetic and real-world datasets demonstrate the improvement of covariate-shift generalization performance brought by SVI.
translated by 谷歌翻译
Deep transfer learning has been widely used for knowledge transmission in recent years. The standard approach of pre-training and subsequently fine-tuning, or linear probing, has shown itself to be effective in many down-stream tasks. Therefore, a challenging and ongoing question arises: how to quantify cross-task transferability that is compatible with transferred results while keeping self-consistency? Existing transferability metrics are estimated on the particular model by conversing source and target tasks. They must be recalculated with all existing source tasks whenever a novel unknown target task is encountered, which is extremely computationally expensive. In this work, we highlight what properties should be satisfied and evaluate existing metrics in light of these characteristics. Building upon this, we propose Principal Gradient Expectation (PGE), a simple yet effective method for assessing transferability across tasks. Specifically, we use a restart scheme to calculate every batch gradient over each weight unit more than once, and then we take the average of all the gradients to get the expectation. Thus, the transferability between the source and target task is estimated by computing the distance of normalized principal gradients. Extensive experiments show that the proposed transferability metric is more stable, reliable and efficient than SOTA methods.
translated by 谷歌翻译
When reading a story, humans can rapidly understand new fictional characters with a few observations, mainly by drawing analogy to fictional and real people they met before in their lives. This reflects the few-shot and meta-learning essence of humans' inference of characters' mental states, i.e., humans' theory-of-mind (ToM), which is largely ignored in existing research. We fill this gap with a novel NLP benchmark, TOM-IN-AMC, the first assessment of models' ability of meta-learning of ToM in a realistic narrative understanding scenario. Our benchmark consists of $\sim$1,000 parsed movie scripts for this purpose, each corresponding to a few-shot character understanding task; and requires models to mimic humans' ability of fast digesting characters with a few starting scenes in a new movie. Our human study verified that humans can solve our problem by inferring characters' mental states based on their previously seen movies; while the state-of-the-art metric-learning and meta-learning approaches adapted to our task lags 30% behind.
translated by 谷歌翻译
尖峰神经网络(SNN)是一种具有生物学知识的模型,具有高计算能力和低功耗的优势。虽然对深SNN的培训仍然是一个空旷的问题,但它限制了深SNN的现实应用。在这里,我们提出了一个名为Spiking SiamFC ++的深SNN架构,用于对象跟踪,并通过端到端直接培训。具体而言,Alexnet网络在时间域中扩展以提取该功能,并采用替代梯度功能来实现对深SNN的直接监督培训。为了检查尖峰SiAMFC ++的性能,考虑了几种跟踪基准测试,包括OTB2013,OTB2015,Dot2015,Dot2016和UAV123。发现与原始的siAMFC ++相比,精度损失很小。与现有的基于SNN的目标跟踪器相比,例如暹罗(Siamsnn),提议的Spiking SiamFC ++的精度(连续)达到了85.24%(64.37%),远高于52.78%(44.32%)的精度(64.37%)。 。据我们所知,Spiking SiamFC ++的性能优于基于SNN的对象跟踪中现有的最新方法,该方法为目标跟踪领域中的SNN应用提供了新的路径。这项工作可能会进一步促进SNN算法和神经形态芯片的发展。
translated by 谷歌翻译